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ANALYSIS AND CONVERGENCE OF THE MAC SCHEME.
1. THE LINEAR PROBLEM

K. A. Nicolaides 1
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ABSTRACT

The MAC discretization of fluid flow is analyzed for the stationary Stokes equations. It

is proved that the discrete approximations do in fact converge to the exact solutions of the

flow equations. Estimates using mesh dependent norms analogous to the standard H 1 and

L 2 norms are given for the velocity and pressure respectively.
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1. Introduction

The original MAC (Marker and Cell) scheme of Harlow and Welch is now over thirty

years old. Many evolutionary changes have occurred and the MAC approach is still a widely

used finite difference method for incompressible flow computation.

The MAC scheme is described in [Hirt 1979] and in most CFD books, for example

[Fletcher 1989] and [Peyret and Taylor 1983]. It also forms the basis of several flow packages

including SOLA [Hirt 1979] and SIMPLE [Patankar 1980].

More recently, it is finite element techniques which have dominated incompressible CFD.

Although highly successful in many ways, the absence of fully satisfactory lower order

schemes continues to be a stimulus to the development of new approaches. Recent work

on finite elements may be found in [Girault and Raviart 1986], [Gunzburger 1989] and

[Pironneau 1989].

The stability problems of low order finite elements [e.g Boland and Nicolaides 1985]

suggest looking for stable schemes outside the finite element framework. The MAC scheme

is one possibility. The standard MAC method suffers from being limited to rectangular

meshes. A second difficulty is the apparent absence of any rigorous analysis for the stationary

problem - the subject of this report. ([Porsching 1979] discusses the evolutionary problem.)

On the first point, a generalization of the MAC ideas to triangular and other more

general meshes was presented in [Nicolaides 1989]. In this corapIementarV _ol_rae or covol_me

framework the MAC ideas are given a control volume interpretation. Complementary pairs

of control volumes are used, and they can conveniently be taken as the triangles and polygons

of a Delaunay-Voronoi mesh system. When specialized to a standard triangulation of, for

example, a rectangular domain the precise MAC equations are recovered. [Nicolaides and

Wu 1991] contains an implementation for a specific problem. [Hall, Cavendish, and Frey

1991] contains a more general implementation.

The covolume formulation is based on discretization of the vector operators grad, div,

and curl and unlike the usual MAC derivation is coordinate free. The error estimates that

are proved here follow from this formulation of the MAC scheme. A related approach was

used in [Nicolaides 1991] to discretize and estimate some div-curl systems and several results

from there will be used below.

Before proceeding, a few technical comments are in order. First, we will present the

analysis for two dimensional problems although the methods used are not inherently two

dimensional. Second, the estimates for the velocity are in a discrete H 1 norm on _. This

implies in particular, estimates for the vorticity on the boundary. While such estimates are

desirable from a practical point of view, we have assumed that w E H 2 and p E H 2. This is

more regularity than one would like to see. In our analysis, the MAC scheme itself is obtained

as a discretization of the "strong" second order form of the equations. This already suggests

the need for extra regularity. The third point is that while we use constant mesh spacings

in the x and y directions, the domain need not be rectangular or convex. Coordinate free

methods make this possible. Summation by parts formulas for example become inherently

multidimensional and not limited to summations along grid lines.



2. Preliminaries

For clarity, we assume a rectangular domain _ and a primal Cartesian mesh having m

and y spacings equal to h and h'. To avoid unnecessary complications, we will suppose

that h = h'. It is easy to modify the results to cover the contrary case. In addition, by

joining the centers of adjacent mesh rectangles (cells) a dual ("staggered") mesh is made.

At boundaries, nodes of the dual mesh are joined to the midpoints of the adjacent boundary

edges.

The N nodes of the primal mesh are numbered from left to right, and from bottom to

top. The T nodes of the dual mesh are numbered in a similar way. There are 71 mesh cells in

all, and there are N dual mesh cells including the half size cells at the boundary. Similarly,

the E edges of the primal mesh are labelled in some convenient way. There is a bijective

correspondence between dual and primal edges, each edge crossing exactly one edge of the

other set. The numbering of the dual edges reflects this, each being numbered the same as its

primal companion. The cells, edges and nodes of the primal mesh are denoted generically by

Ti, ai and uk respectively. Those of the dual mesh are similarly denoted by primed quantities

such as cr}. The lengths of the dual mesh edges are equal to h except near boundaries where

they may be h/2. A direction is assigned to each primal edge according to the rule that

positive is from low to high node number. The dual edges are directed by the convention

that (cry, crk) are oriented like the (m, y) axes of the coordinate system.

Defined on each primal edge 6rj is a component of the velocity field, directed in the positive

direction of a_. This velocity component is computed as n. u or its average, where u denotes

the velocity vector at the midpoint of the primal edge, and n is the normal to the edge.

Components of other vector fields are defined similarly. Such sets of normal components

defined on the primal edges can be identified with R E. We will introduce an inner product

into R E by

(u,v)w := ujvj%
o'jEN

In this, Wj equals twice the area of the figure obtained by joining the nodes of a primal edge

to the adjacent dual nodes. The sum is to be taken over all edges of the primal mesh. The

associated norm is denoted by II • IIw. Clearly, it is twice a discrete L 2 norm. This inner

product space is denoted by H, or by H0 if the normal components assigned to the boundary

edges are all zero.

Various scalar fields including pressures are defined at the dual nodes. They can be

identified with elements of R T. An inner product on R T is defined by

0). :=
r_EN

Here, the sum is over all mesh cells and Ai denotes the area of the i th cell. The associated

norm is denoted by 1[ " IIA"This inner product space is denoted by 7_.

Analogous to 7_, scalar fields defined on the primal nodes can be identified with elements

of R N, and an inner product defined by

(_b, X)*' := _ _PkxkA_,

_-_En



where the sum is over all dual cells including dual boundary cells, and A_ denotes the area

of the k th dual cell. The norm is denoted by n " Ila', and the inner product space by ,9, or

by So if the boundary values are all zero. Sometimes, it will be convenient to extend this

norm and inner product over the interior or boundary nodes separately. A subscript will be

used to denote such dependence thus: II • IIA',o.

For each primal cell Ti, discrete flux and divergence operators are defined on L{ by

:=
trj E o'_r_

and

(Du)i = (Du)dAi.

By hj we mean hj negatively signed if the corresponding velocity component is directed

towards the inside of r_, and positively signed otherwise.

For each interior dual cell _'_ discrete circulation and curl operators are defined by

(0u). :=  di'+

and

(c,,)j =
This time the tilde produces a negative sign if the corresponding dual edge is directed against

the positive sense of description of Or_ and a positive sign otherwise.
This definition cannot be used in boundary dual cells. To extend it, we must require

that tangential velocity components are specified along boundary segments defined by the

intersections of consecutive dual mesh edges with F. Then we can define discrete circulations

and curls in the same way even for the boundary dual cells. These extensions of C and (_

to the boundary are denoted by Cb and (_b. We will consider that the components of Cu

are associated with interior nodes v_ and that the components of C_,u are associated with

interior or boundary nodes as appropriate.

Normal boundary components of u E /X are denoted by ulr. Sometimes, it will be

convenient to use the same notation to include tangential components in the sense of the

previous paragraph as well as normal components. It will be explicitly stated whenever such

tangential boundary components are included.

Slope operators are defined on _ and ,q by

¢i= -- ¢il
(a¢), :=

h

where it and i2 are the nodes defining a_ and the positive direction is from it to i2, and

(R¢)i := h , i, > it

where ai is a primal edge with endpoints it and i_.

We will use the summation by parts formulas which follow:

(+) (., R¢)w = ¢)., W • U V¢ • S

3



wheretangential componentsof u are zero. This notation is consistent with the definition of

Cb only if the tangential components of u are zero. We will require a variant of this to cover

the case when Re is restricted to interior edges - those with at most one node on £. This is

(i)' (_, R¢)w = (ebb, ¢)4, w c uo v_ c s

so that the normal boundary values of u are zero as well.

(ii) (=, C¢)w =-(ou, ¢)4

These are easily proved by direct computation.

Vu • U0 V¢ • p.

3. Div-curl Results

A covolume method and analysis was given in [Nicolaides 1991] for the div-curl system

div u = p

curl u -- w

u. nit = f.

We will quote some results of [Nicolaides 1991] which are used below.

In the notation introduced in section 2 the discrete div-curl approximation is

Du _

Cu=_

ulr = f

where in each case the data is computed by simple averaging over the appropriate geometrical

element. For example,

@ := _ w dz dy

and
1

where a¢ is numbered anticlockwise around £.

It is worth remembering that Cu are the discrete curls (normalized circulations) taken

around interior nodes only.

If _ is multiply connected there is an additional condition [Nicolaides 1991], but we are

considering rectangular domains here. The results stated below are valid generally.
Define

11 u . tds ak • £ (1)

where the integration is along the positive direction t of a_. The superscript is chosen for

consistency with [Nicolaides 1991]. If ak • £ then we define

U(k2) := f_.

4



An error estimatefollows:

Theorem 1. Assume that the div-curl equations have a unique solution u with u E H2(f_).

Then (a) the discrete div-curl equations have unique solution u, and (b) the estimate

IIu- u(2)[I w < gh2lulH,(fl)

holds where K is independent of u and h.

Proof. This is proved in the remarks following Theorem 6.1 in [Nicolaides 1991].

We will also need the following bound on the discrete solution by its data.

Theorem 2. The solution of the system

Dun 0

Cu = o_

ulr = 0

satisfies

Ilullw<_KII IIA,

where K is a constant independent of w and h.

The norm on the right here refers to the summation over interior nodes of the primal

mesh.

Proof. See section 7 of [Nicolaides 1991].

4. Stokes Equations

The inhomogeneous stationary Stokes equations are

Au - VP = f in t2

div u = 0 in f_

ulr -- g.

Here, f_ denotes a polygonal domain in R 2, and I' denotes its boundary.

The standard weak form of the Stokes equations has unique solution u C Hl(f_), p E

L02(f_) if f E L2(F/) and g E H1/2(F) [Girault and Raviart 1986].

The vorticity w is defined to be curlu := O_v - Ovu where the velocity field u := (u, v).

In terms of w and using the incompressibility constraint, the momentum equation becomes

-curl w - VP = f (2)

5



where curl denotes the operator (Ou, -02).

Let _i denote an interior mesh segment, and let t and n be the unit tangent and unit

normal directed along the positive directions of crl and u_ respectively. _ may have at most

one node on I'. Let A and B denote _'s nodes where the positive direction is from A to B.

Taking the inner product of the last equation with n and integrating along _ from A to B
gives

- w(B) + w(A) = _, cOp_ndt + _f. nds. (3)

If, say, B is a boundary node we will use this formula to extend the vorticity to B. The

extended value is well defined and independent of the particular line segment through B

(or the point A on it) under the assumptions w E H_(fl), _TP C Ha(f_), f E Hl(fl). To

prove this, denote the extension to B just defined by wl(B), and let another one based on a

positively directed line segment from C to B be called w2(B). Then it follows that

so that

[w2(B)-wl(B)] = _(asc)(V p-f).nds

= 0

where now n denotes the outer unit normal to the boundary O(ABC) of the triangle ABC

and the trace theorem was used in association with (2).

Note that since w E H2(f_), by Sobolev's lemma w is uniformly continuous on _ and so

can be uniquely extended to be continuous on _t. The extension of w onto _ using (3) and

the Sobolev extension coincide: for denoting by ws(B) the Sobolev value it follows that with
AEfl

Io'(B)- o's(B)l __ [o'(B)- o'(A)[ + [O,s(B)- o'(A)[
Op

_< + Io's(B)-o's(A)l

<_ IABll/ llPllm(n)+ Io's(B)-o's(A)l

where the integration is performed along the line segment joining A and B, and Cauchy's
inequality and a trace theorem were used. The result follows from this.

5. Discrete Stokes Equations

The discretization of the Stokes equations is based on (3) obtained above. The momentum
equation may be written as

where

- = F

cop 1 COp



and n denotes the unit normal to a_, and F denotes the vector of average normal components

of f. In terms of the operators of section 2, the discrete equations are by definition

-R_'-Gp' = F

Du' = 0

Cbu I _ 03 I,

Boundary values for u are defined as simple averages of the normal and tangential com-

ponents of g along the boundary edges of the mesh, so that a typical normal boundary value
is

u' 1 f_= g. n ds tri E PX ,
where n denotes the unit normal directed positively for the edge and h denotes the edge

length. The typical tangential boundary value, associated to a primal boundary node vi is

similarly the mean of the tangential component of g between the dual edge intersections

enclosing ui.
To normalize the pressure approximation, we may impose

(1, Pt)A = 0.

The discrete momentum equation has one component per interior edge, and there is

one incompressibility constraint for each primal cell. Since there is one unknown velocity

component per interior edge and one pressure variable per cell there is a match between

equations and unknowns, excluding the pressure normalization.
It can be proved by direct calculation [Nicolaides 1988] that this approximation to the

Stokes operator is precisely the MAC approximation. The equations would be identical were

it not for our treatment of the data by exact integration in place of the quadrature likely to

be used in reality.
Explicit in the equations above is an unexpected connection with the velocity-vorticity

formulation of the Stokes equations. From our discrete equations above we see that the

MAC scheme can reasonably be described as a discretization of that formulation. But in the

standard finite difference way, they are derived as an approximation to the primitive variable

equations. So the MAC scheme simultaneously discretizes the two forms of the governing

equations. Whatever advantages or disadvantages are perceived in either formulation are

therefore present in the discrete scheme. From a slightly different viewpoint it follows that

there are discrete analogs in the MAC framework (and in the covolume framework in general)

of the transformations which enable us to go from one formulation to the other [Choudhury

and Nicolaides 1991].

Including the pressure normalization there is one more equation than unknowns. This is

not always convenient. We can avoid it by subtracting the mean pressure in the momentum
equation. For this, let e E R T be the vector with ones in all its positions, and let A E R T

have := A /I I. In place of ap we write G(I- j,t)p. The discrete Stokes equations
become

-RCt, u'- G(I - e.,4t)p ' = F

Du' = 0



together with the boundary equations. Now the pressure normalization is built in and the

number of equations and unknowns and equations is the same.

Theorem 1. The equations

-RCbu'- G(I - e.4t)p ' = F

Du' = 0

with prescribed normal and tangential boundary values Ulr have a unique solution.

Proof. Consider the homogeneous equations

-RCbu'-G(I-eAt)p ' = 0

= 0

=" O.

Du'

Ut[F

Included in the homogeneous boundary condition are both the normal and tangential values.

Taking the inner product with u' E/4o we obtain

(_', RC_u')w+ (_,',C(I- eA')V')w=O.

Using the summation formulas (i)' and (ii) reduces this to

IlCb='ll_,,= 0

and in particular Cu' = 0. By Theorem 3.1 (a) it follows that u I = 0. Then G(I- e,4t)p _ = 0
and (I- e.4t)p ! is constant since the mesh is connected. But pl can differ from its mean

by a constant only if the constant is zero, and so p' = 0. Uniqueness follows, and since the

coefficient matrix is square so does existence.

6. Error Bounds

We will define

(_)i := _ w dx dy t_i e n. (4)

By Stokes' theorem we also have

= u.tds vi 6_.(_)' _, _,

Associated with _ is a unique discrete velocity field v defined by

Cv = _,,

Dv = 0

'U IF : t/,I

(5)



where we recall that ul[r is defined as the simple average of the normal component g. n on

each boundary edge.

The field v defined in this way has no tangential components on r associated with it.

We will now define them to be equal to those of u'. It is convenient to continue to call the

augmented field v. Recall that the tangential components of z_' on r are defined as averages

of the prescribed tangential velocity. It follows that the tangential components of u' - v are

all zero.

The last equations are the standard covolume approximation to the system

curl u = w

div u = 0

u.n[r = g.n.

The difference u'-v satisfies the discrete div-curl equations

D(u'- v) - 0

C(_' - v) = _o'-
(,;-'_)Ir = 0

and by Theorem 3.2, it follows that

ll_'-vtlw ___KIl_'-o_llA,. (o)

In addition to the interior values, boundary values for O_ are defined by

(_)_ := (Cbv)_ _,__ r.

Subtracting the exact and approximate momentum equations and introducing _ E

equal to the mean pressure in the primal mesh cells we obtain

0p
_ R(w, _ co,,) _ G(p' _ _) = -R(w - co,,) - (#(_-_n ) - Go) a e Ft. (7)

The meaning of the notation a E f_ is that the equation has one component for each edge of

the primal mesh which is not on the boundary I'.

It follows that

-(,,'- ,,, R(_'- oo))w-(,,'- ,,, C(p'- _))w =

(,,' - ,.,,R(o.,- oo))w- (,; - ,,, _,(-_-)- OP)w ,,ea

and using both of the boundary conditions on u' -- V and the summation formulas (i)' and

(ii) that

-(Cb(u'- v), W'--O,,)A,+ (D(u'- v), p'- _)A =

--(C_(u'--,,), _ -- _'oh' -- (,; - v, ,(_) - CO)w.



Thu8,

W I __ Wv_ _ ....

from which it follows by Cauchy's inequality and bounding Hu' - vHw as in (6) that

I1,,./--'_,,IIA' < I1'_--_,,lli'+ gll#(O_)- G_Jtw. (s)

In this equation, the A' norms are extended over all nodes including those on F.

We will define a new field u* E 14 as follows: on interior dual edges it is given by (1), and

on dual boundary edges by a similar average. It also has tangential boundary values equal

to those of u'. By definition of Cb it follows from (4) and (5) extended to r that

CbU" =: m -- _. _ dz d_ ui e f_.

m gives the mean vorticity in each dual cell, including those on l". Notice that for interior

dual cells _v and _ coincide.

Using (8) we now have with Ks(p):= II#(_) - GPllw

II_' - @lA, < I1_'- _IIA, + I1_ - _HA,
< II_'- o.ll_' + It_- _.lt_' + g_(p)
< I1_- _ll_' + 21t_- _IIA' + g_@)
< ll0,- mllA'+ 211_,- _ollA',r+ g_(p)
< I]_'- mllA',°+ II_- mll_,,r+ 2lira- m.llA,,r+ g_(p).

The terms bounding

i.

6. Estimates

(9)

the error can be estimated by approximation theory and Theorem

To begin with we will estimate ]]w -@]a,,n in (9). For this, consider the linear functional

:= 0)-
j_l/2 j_lp w((, 71)d( dr]

on H2(Q_), where Q1 denotes the square -1/2 < ( < 1/2, -1/2 < _7< 1/2. It is clear that

the functional is bounded and is zero on linear functions. It follows that

Ill(w)l <_ KIwlH,(Q_).

Changing the variables in the integrals to z := _h and y := 7/h gives eventually

](w- _)j[ < ghlwlH_(_ ) _'_ E _2.

Squaring and summing over all _'_ G _ gives

I1_- _,IIA,,._<Kh2lwlH_(n) •

10



For h sufficientlysmall (_ lwIH_(n)l/IwIH,(n)l)itfollowsthat

IIW -WlIA'," <--KhluiH2(")

which is the form we will use below.

For the corresponding boundary term we consider the cell -1/2 < _ < 1/2, 0 < 77 < 1/2.

Then denoting this by Q2, we have

1 /q 1 1 1 fQwd_d, ll.I_(O,O) ]Q2] wd_d_l<_lw(O,O)-w(O, )]+lw(O,_) ]Q2I2 2

The second term can be estimated by the same method used above for Q1. For the first

term,

%

I fo' _.(0, 7) d.l _< gll_.(0, .)]l(0,i)
KliwnllH'(Q,)

<_ K(IWIHI(Q2) + IwIH,(Q,))

using the trace theorem. Changing variables to x :-- _h and y :-- _h gives

k

ILT _(0, y)dy] < K(I_IH,(Q_,_))+ hIWIH'(Q.,_)).

Squaring, multiplying by h 2 and summing over the boundary nodes and incorporating the

second boundary term yields

I1_- _ll_,,r -- K2(h4iW]2H,(n)+ h_M_'_(m)

so that for h sufficiently small we have the estimate

tlW -5)][A,,r _ ghlW]H_(n).

We shall amalgamate the interior and boundary estimates to get

II,.,-,_IIA,,. <- KhlwlH_(.)

_< KhIuIH_(, )

for h sufficiently small.

Next we will estimate ]]5)_ - ¢ol]_,,r. The contribution to this sum associated with a fixed

boundary node i has the form I(_)_ (_)_12h2- T" Suppressing the dependence on i we have

h h h 2

,o._ _- +(°.-o),,,/y
I,

< I(,,"- ,.,),- (_"- v),llh + I(¢ - '-,)_li-_-.
/.

h and the interior dual edge ofIn this, the subscripts refer to the two dual edges of length

length h which are used to compute the discrete curl around the boundary node. There is

11



no contribution from the boundary itself because the tangential component of u* - v is zero

there. The term (u* - v)l, for example, is the difference between the average normal velocity

component measured along the normal from the boundary to the dual node of the boundary

cell in question and the average of the (prescribed) normal velocity component measured

along the boundary edge of the same boundary cell. (u* - v)2 denotes the similar difference

of averages on the opposite side of the node i. The union of these two boundary cells is the

cell Q2,h which was encountered in the previous estimate.

To estimate the first term, we note that the functional (u* - v)l - (u* - v)2 is bounded

on H2(Q2) and it can be checked that it vanishes on linear vector fields. Using the familiar

argument and a scale change we obtain the estimate

[(u* - v)l - (u* - v)_[ _< Kh[u[m(Q,.h).

Summing the corresponding terms over F gives

I(u* - v)_ - (u* - v)2[ 2 < K2h2[u[_,(n).
F

For the remaining part, using Theorem 3.1 we obtain

I(_"- v)l_
F

= _-, E I(_° _ v)lh_
F

< _-_E I(="- .)lh _
il

< K2h-_h41u]H,(n )

< K2h21UIH,(,).

In this, the sum on the left is over all dual edges parallel to F appearing in the definition of

the boundary circulations (in fact, the 'dual boundary' of f_) and the right hand sum in the

second line is over interior edges of the primal mesh. Assembling the last two estimates we
obtain

[[wv- W[[A,,r _< gh[u[/_.,(n).

Estimation of the pressure term follows similar lines. The basic functional for this case

is

f,/, o) (f,/, f0 f,/, ,In(p) := J-1/2 -- dn- J-1/2J-1 pd(&7-J-1/2foo pd(drl)"

13(.) is bounded on H2(Q3), where Q3 denotes the rectangle with corners at (-1,4-1/2) and

(1, 4-1/2), and is zero for linear functions. It follows that

II_(p)l< KIPlI-,,(,_,).

Introducing the scale changes z := _h, y := _/h we obtain

1 Op(z, y) dyI-[Z ox
Pk_ -- Pkl

h I<- K]pIH'(Q'(h)

12



where the integration is along the positive direction of ak and Qs(h) denotes the scaled region

with a_ separating the primal mesh squares _'k2 and rk_. A similar result holds when _k is

horizontal. Squaring and summing, it follows that

I1,(_)- apllw _<Khlpl,_l.). (io)

These estimates give the first part of the main result:

Theorem 1. Under the regularity assumptions u E H2(fl), w E H2(f_) and p E H2(fl), the

estimate

ll_/-_ll_,< Kh(IpIH,(.) + lul_,(°))

holds for all h sufficiently small.

= ullL,(a) + ]]L:(n) it follows that the norm of theRecalling that ]lulled(n) Ildiv 2 llcurlu 2
error is indeed a discrete (mesh dependent) H_(f_) norm.

8. Pressure Error

We begin this section by recalling the following standard result:

Lemma. The equation

divv = f e L02(a)

has a solution v e H_(a) satisNing

Ilvll_,(o)_ KIIfIIL=(n).

Proofs may be found in [Oirault and Raviart 1986], and in [Temam 1984].

We wiU apply this result with

f := _- p' EL_(a)

where the right side denotes the piecewise constant function with these values in each primal

mesh square. Clearly

IIr_-p'IIL,(.)= 11_-P'IIA

so that

IIvlIH_(n)<---KII_- P'IIA. (11)

Next, introduce v (1) E L/0 defined on each edge of the mesh as the mean of the normal

component of v on the associated primal edge, i.e.

if.•- - v. nds crk E _.
JX)l_ "- h

13



Useof the divergence theorem shows that

Dr(1) = f- P'. (12)

In addition, we have

IIv(1)llw< gllvtlHlm)< KIIP-p'IIA. (13)

Only the first inequality is new. It is a consequence of the fact that the functional

[112 vl(O, y)dy
Bv := .t-112

is bounded on Hi(Q4), where Q4 denotes the square with corners (4-1/2, 0) and (0,-4-1/2).

Then changing the scale to h in both coordinate directions and summing over all the dual
edges gives the result.

Similar to vO) we will need v* which is defined on the dual edges, as the mean of the

tangential component along the dual edge in question:

v*l, _:=_ ,v.nds a'h e _.

n points along a' in this. We will define tangential components for v* on the boundary

segments delineated by dual mesh lines. These tangential values are defined to be zero.
Now we have

= v. t dt = -- curl v dx dy(cb,,'y _ ,-; ,..;
from which it follows that

IIC,,,,*ll_,_<Ilcurlvll_,,m)_<Ilvll_,m)<_KII#-ftl_. (14)

We will need an estimate for [[CbV(')lla,.To obtain it, we first note the estimate

IIv*-,-,¢')11__<KhllvllH,m).

The technique for proving this is given in [Nicolaides 1991, Section 6].
details here. Then

(15)

We will omit the

I1@.,(_)11_,_< ItC,,(v*- v('))llA,+ IIC,,v*llA,

hllV" - ,-'°)llw+ IIC,,,.,'IIA,<

_<KIIP- P'IIA

by (15),(11) and (14).

Now taking the inner product of v(I)with the basic errorequation gives

(16)

(,,(1),R(.,'- .,))w + (,,('),C(_- V))_ = (,,('),_(0_)-ap)..

14



and using the summation formula (ii) gives

li#- p'll_.-<llC_,¢1)11.,,.,11,,,'-,:,.,11..,.,,,'.,+ i1¢1)11_11_,(_)-Cpllv,.-.

Thenusing(16)and(13)we_.n-.nyobtain

0p
I1_- p'll_-<K(JI,,,,,'- ,,-,11_,,,+ I1_(_) - C_II_.

Using Theorem 6.1 and the approximation theory estimates we now have the second part

of the main result:

Theorem 1. Under the regularity assumptions u C Hn(_), w E Hn(_) and p _ H_(_), the

estimate

]IP'- _[[A< Kh(IpIH'(n) + lUlH,(.))

holds for all h suO_ciently small.

Thus the MAC scheme is first order accurate for the vorticity and pressure. It is not

known yet whether the velocity is of higher order accuracy than the vorticity. Computations

suggest that it is one order greater. [Nicolaides and Wu 1991].
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